
1

FCUBE: A Platform for Collaborative Learning

Documentation

I. FACTORING OPTIONS

Factoring is what we call the generation of multiple learners each with its own subset of data, explanatory

variables, and parameters. This process is governed by the parameters options (see Listing 1 for an example).

Data factoring: The parameters options file provides the path to the remote data storage directory (NFS or S3 bucket

name) where the training data is stored. FCUBE’s factoring service randomly picks one training split and copies it

to the instance local disk. Then a stochastic sampling process takes place where both exemplars and explanatory

variables are factored according according to the data sample rate and variable sample rate parameters. The first

specifies the ratio of exemplars that will be sampled from the data, while the second specifies the ratio of the

explanatory variables. It is important to note that we keep track of the variables used for training in each of the

instances (see Listing 2). This information will be necessary later to evaluate the generated models on unseen data.

Parameter factoring: The user decides what parameters will be factored (parameters for which a value will be

sampled stochastically from the possible ranges/choices) and what parameters will be set to their default value.

As mentioned in the previous section each FCUBE instance has built-in factoring functionality that will parse the

parameters options file and generate a configuration (properties) file for the learner during the deployment phase

(see Listing 3).

September 8, 2014 DRAFT

2

A. Parameters option syntax

Fixed parameters
First, we need to specify the values of fixed arguments (such as the number of CPU threads). Note that the path

to the dataset must be specified as a fixed parameter.

Fixed parameters: The syntax employed to declare fixed parameters is:

fixed param name value

Parameters Options Specification
The following aspects are declared 1) Name 2) a type, 3) a default value, and 4) a discrete set, range, or subset

of possible values.

Types: F 3 supports 4 basic types: int, float, bool, string

Default values: The default value will be used if the parameter is not factored. The following syntax has to be

added after the type of the parameter:

default (value)

Discrete sets: The instruction discreteSet is used to specify a set of discrete options for a given parameter. The

following notation must be used:

par name type discreteSet default(optiond){opt1;...;optn}

Ranges: This option only applies for the numerical types int and float. A range is characterized by a minimum

value, a step value (difference between consecutive numbers of the set), and a maximum value. F 3 syntax does

not provide explicit support for continuous values. However, an easy approximation can be obtained by setting a

small step. To specify a range of values for a given parameter, the following notation must be used:

par name type range default(val)[min:step:max]

Subsets of different sizes: This instruction allows to select a subset of a varying size from a set of items. For

instance, this instruction is helpful to select a subset of explanatory variables. The original set from which we

will sample is specified with par name while the second parameter specifies the size of the subset. To specify a

random subset of varying size, the following notation must be used:

par name type subset default(1){val1;...; valn}

where the values between brackets correspond to percentages (0 < vali ≤ 1).

Specifying Factored parameters
Finally, we need to list the the parameters that will be factored, i.e. the parameters that will be explored in the

cloud runs.

Factored parameters: The following syntax is employed to set the parameters that will be factored:

factoredParams{par name1,...,param nameN}

September 8, 2014 DRAFT

3

B. Parameters Options Examples

In this section we show an example of parameters options and the two configuration files generated with FCUBE

factoring service. Let is consider a dataset composed of 20 features for this example.

1 f i x e d d a t a f c u b e / h i g g s / t r a i n /

f i x e d t h r e a d s 2

3

d a t a s a m p l e r a t e f l o a t d i s c r e t e S e t d e f a u l t (1) { 0 . 1 ; 0 . 2 }
5 v a r i a b l e s a m p l e r a t e f l o a t d i s c r e t e S e t d e f a u l t (1) { 0 . 2 5 ; 0 . 7 5 ; 1 }

f a l s e n e g a t i v e w e i g h t f l o a t r a n g e d e f a u l t (0 . 5) [0 . 4 : 0 . 0 5 : 0 . 6]

7 xover op s t r i n g d i s c r e t e S e t d e f a u l t (SPUCrossover) { SPUCrossover ; KozaCrossover }
p o p s i z e i n t d i s c r e t e S e t d e f a u l t (1000) { 1000 ; 1500 ; 2000 }

9

f a c t o r e d P a r a m s { d a t a s a m p l e r a t e , v a r i a b l e s a m p l e r a t e , xover op , p o p s i z e }

Listing 1: Example of parameters option file sent to all the FCUBE instances deployed within a FCUBE run.

The path to the data and the number of threads are declared as fixed parameters. The built-in parameters for data

management (data sample rate and variable sample rate) as well as the crossover operator and population size

are all assigned a discrete set of choices. The learner-specific parameter indicating false negative weight is assigned

a range of possible values. Finally, the instruction in the last line indicates the parameters that will be factored

(stochastically selecting a value from the possible choices). Only the false negative weight will be set to its default

value.

d a t a s p l i t = s p l i t 5 . c sv

2 d a t a s a m p l e r a t e =0 .1

v a r i a b l e s a m p l e r a t e =0 .25

4 s a m p l e d v a r i a b l e s =X0 X4 X9 X11 X16

Listing 2: Example of a data configuration file generated with FCUBE factoring service. Note that due to the

stochastic nature of the process, different FCUBE instances will generate different configuration files. This file will

be used in the later process of filtering and fusion and allows to keep track of the split and variables used for

learning in each FCUBE instance.

xover op =SPUCrossover

2 t h r e a d s =2

f a l s e n e g a t i v e w e i g h t =0 .5

4 p o p s i z e =1000

Listing 3: Example of a Java properties file generated with FCUBE factoring service. Note that due to the stochastic

nature of the process, different FCUBE instances will generate different configuration files. This file will be an

input argument for the learner deployed in the cloud

September 8, 2014 DRAFT

4

II. LEARNER TEMPLATE AND EXAMPLES

USAGE:

2

TRAIN :

4 j a v a − j a r g p f u n c t i o n . j a r − t r a i n p a t h t o d a t a −m i n u t e s min −p r o p e r t i e s p a t h t o p r o p e r t i e s

6 OBTAIN PREDICTIONS :

j a v a − j a r g p f u n c t i o n . j a r −p r e d i c t p a t h t o t e s t d a t a −model p a t h t o m o d e l −o p a t h t o p r e d i c t i o n s

8

10 EXAMPLES:

12 TRAIN :

j a v a − j a r g p f u n c t i o n . j a r − t r a i n h i g g s 2 . csv −m i n u t e s 60 −p r o p e r t i e s p a r a m e t e r s . p r o p e r t i e s

14

OBTAIN PREDICTIONS :

16 j a v a − j a r g p f u n c t i o n . j a r −p r e d i c t h i g g s 1 0 . csv −model model . t x t −o p r e d i c t i o n s . c sv

Listing 4: GPFunction learner interface and examples of use. GPFunction is one of the learners integrated in FCUBE

framework. In this case, the learner is packaged in a Java executable file. FCUBE supports also Python, C, and

C++ binaries as long as the provided interface is implemented.

September 8, 2014 DRAFT

